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A multidimensional statistical analysis of data obtained from breath gas measurements with Proton
Transfer Reaction-Mass Spectrometry (PTR-MS) is proposed, based on a chemical-diffusion equilibrium
approach. The proposed methodology is developed and demonstrated on the problem of detecting expo-
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sure of human beings to ionizing radiation. It could be applied to a general family of non-invasive,
high-throughput, breath gas based detection strategies, like for instance a breath gas test for early
diagnosis of lung cancer.

© 2010 Elsevier B.V. All rights reserved.
reath gas VOC
etection of exposure

. Introduction

Breath gas analysis is a non-invasive investigation method
hich can hopefully be used in medical applications [1]. Human

reath gas contains volatile organic compounds (VOCs) which are
ainly blood born and therefore allow monitoring physiological

rocesses in the body. This technique has already been explored
or a number of diseases [2,3].

Proton Transfer Reaction-Mass Spectrometry (PTR-MS) [4–6] is
technology which has become a well-established method to mea-
ure a number of VOCs in human breath gas [3,7–15]. It allows
ighly sensitive, rapid and on-line measurements and is therefore
ell suited for high-throughput applications. Furthermore, it could

e fitted to an ambulance or transported and powered by small
ehicles, and it is able to cover a large range of masses, which is not
ossible with an electronic nose for instance.

When applied to breath gas analysis, PTR-MS can produce eas-
ly a large amount of quite variable (noisy) high dimensional data.
onsider for instance a mass spectrum from 20 to 200 atomic mass

nits (AMUs), where for each AMU the signal is the number of
rotonated molecules with the desired mass, detected in a given
mount of time.
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One problem with such data is that classic low-dimensional sta-
tistical techniques require a large amount of samples to reduce
the risk of overfitting. In other words, when devising a test
from training data there is a chance that a particular subset of
dimensions exhibits the very statistical separation we are looking
for not because of a physical link between these measurements
and the target phenomenon, but simply because of random-
ness.

In view of this a multidimensional statistical approach is pro-
posed, implemented as a linear combination of an opportunely
preconditioned data subset. The preconditioning is a denois-
ing step, while the linearity keeps the analysis simple and
fast. The multidimensionality and the subset selection are two
aspects of a trade-off approach between sensitivity, robustness and
noise.

The aim is to make use of the extra information provided by the
high dimensionality while overcoming its problems by means of
a dimension selection scheme parameterized by the signals’ nois-
iness or numerical stability. As a consequence a relatively limited
number of samples with respect to the number of dimensions is
required.

The proposed breath analysis paradigm (PTR-MS plus multidi-
mensional statistical analysis) could be deployed for a wide range
of applications. As a test case, its feasibility for detection of expo-
sure of human beings to ionising radiation is explored in this

paper.

After the present introduction, this paper articulates into a
presentation of the radiation detection problem, including the sam-
pling methodology and the difficulties in handling the acquired
data, followed by the analysis approach and the results.

dx.doi.org/10.1016/j.ijms.2010.06.011
http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:mattia.fedrigo@helmholtz-muenchen.de
http://www.helmholtz-muenchen.de/
dx.doi.org/10.1016/j.ijms.2010.06.011
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Table 1
Breakdown of collected samples.

Sample type Number of samples Lung therapy Full body therapy

Controls’ samples 84 0 0
Patients samples’ before radiotherapy 15 2 13
Total from not irradiated people 99
Patients’ samples during radiotherapy directly before a session 9 3 6
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Patients’ samples during radiotherapy directly after a session 2
Patients’ samples during radiotherapy, no session info 1

Total from irradiated people 5

. The test case: detection of radiation exposure by PTR-MS
reath gas samples

Nuclear power plant leaks, terrorist attacks with so-called dirty
ombs: one can easily imagine dire scenarios where one would
uickly need to ascertain the exposure of a large population to ion-

sing radiation, whose effect can be quite complex [16–18]. Up to
ow, the extent of the ionizing radiation exposure to individuals
an be estimated by biological dosimetry methods based on, e.g.,
hromosome aberrations, lymphocyte depletions or cytogenetic
nalysis. Unfortunately, these procedures are invasive, time con-
uming and may not be feasible for large-scale scenarios. For such
ncidents, one would need to have a high-throughput technique.
dditionally it should be easy to handle, cheap and minimally inva-
ive. PTR-MS analysis of breath gas samples fits these requirements.

Living tissues absorb incident radiation differently depending
n the type of radiation and the energy. The radiation may ionize or
xcite critical targets of the cell, i.e., the DNA molecule (direct effect
f radiation) or produce ion radicals which may damage the criti-
al targets (e.g., also membrane lipids and proteins) in subsequent
hemical reactions (indirect action of the radiation).

We assume the theory that both direct and indirect actions of
adiation result in chemical changes from the breakage of bonds,
he chemical products of such processes being released into the
lood, reaching the lung and the volatile compounds of them being
xhaled via breath [19].

According to this hypothesis, specific VOCs might be detectable
n the breath as a consequence of irradiation and might therefore
e used as biomarkers to detect human exposure to ionising radi-
tion. There is already a hint due to a pilot study undertaken by
keldon et al. [20], who found that the ethane level in human breath
s enhanced directly after radiation therapy.

The following sections describe the PTR-MS measurements of
reath from patients of full or partial body radiotherapy, in the
ramework of a comparison of the VOC spectra before and after
rradiation. The proposed multidimensional statistical analysis uses
his information to look for specific VOC biomarkers to be used for
adiation exposure assessment.

.1. Patients and breath sampling

The radiotherapy of tumours is based on the observation that
ells of certain tumour types are more radiosensitive than the cells
f normal tissue. The patients who donated breath samples were
reated with conventional �-ray radiation therapy. This involved
ither the thorax region or the entire body, and was performed
ostly using multifraction regimes (in a multifraction regime the

adiation is not applied in a single dose, but in a number of sessions).
The expired breath gas was collected in commercial Teflon-FEP
fluorinated ethylene propylene) bags of 3 l volume. At the same
ime, a sample of the room air was collected.

Between 1 and 8 samples were collected at different times from
he same patient, before, during and after a therapy cycle. Patients
ere tested before the beginning of the first session of the irradi-
8 14
15 4

ation cycle (when no irradiation is administered yet), then at the
time of a successive session (immediately before and/or after the
session of the day), and eventually after the last session of the cycle.

Samples from controls, who are non-irradiated healthy people,
were also collected, preferably in the same room air as the patients
(see Table 1).

Patients subjected to full body irradiation received between 4
and 12 Gray of cumulative exposition during a complete cycle,
while cumulative organ doses for lung irradiation ranged between
12 and 75 Gray. Most of the patients sampled directly before a ses-
sion were subjected to a previous session within the last fortnight:
3 of them the day before, one of them 2 days before, one of them
8 days before, one of them 13 days before, while for 3 of them no
further information was available.

2.2. PTR-MS analysis

The PTR-MS system employed for this study is described in
detail in [21].

The collected bags are stored in an oven at 40 ◦C for at least
30 min to evaporate the condensed humidity. Then, while still in
the oven, they are connected with the inlet of the PTR-MS by a
heated Teflon tube. Measurements start after a running-in period
of one minute. VOC mass spectra are screened over the range from
20 to 200 atomic mass unit (AMU).

Normally 7 cycles are measured and during each individual cycle
each mass is measured with a dwell time of 0.5 s. Average values
from the 7 cycles are calculated. This is performed to reduce sta-
tistical counting noise. Although one could raise the overall fixed
observation time to do so, the noise effect is of course much stronger
for small count signals, where counting noise is stronger with
respect to signal noise (mean count). In other words, adaptive scan-
ning times are possible. The measurements represent mass counts
and are always non-negative, but they do not need to be integers
because of averaging.

The choice to focus between masses 20 and 200 is based on
the relatively low frequency of very large VOCs (beyond atomic
mass 200), on the assumption of irrelevance for our task of proto-
nated molecules with an atomic mass below 19, and on a technical
problem with mass 19.

Protonated water (H30+) corresponds to mass signal 19 but this
signal is normally so high that it induces detector saturation. For
this reason the measurement of mass 19 is not used in current prac-
tice. An indirect way to measure water concentration is to consider
mass signal 21, which is also a water signal due to natural isotopes.
The isotopic ratio is roughly 1 over 500, avoiding saturation.

Moreover, we can also estimate the sample’s humidity from the
collected data by mean of the various water clusters which are
well within our observation range. A water cluster is a cluster of

molecules bound together by van der Waals forces and consist-
ing of a protonated water molecule plus any number of further
water molecules. The stability of a cluster diminishes with the num-
ber of extra water molecules. Water clusters affect mass signals
19 + 18 × n = 37, 55, 73, etc.



al of M

2

s
T
u
p

o
t
n
a
e
d
c

3

b
c
s
p

f
w
t
t

h

o
w
c

i
t
P
n

e
c
l
p
i
b
b

t
a
r
s
p
w
n
S
s
r
r

F
w
s
m
p

M. Fedrigo et al. / International Journ

.3. Collected data

A sample’s data consists of a vector with 181 entries corre-
ponding to protonated molecules’ masses from 20 to 200 AMU.
he entries are non-negative, can be equal to zero, and provide
s with a measure of the relative concentration in the air sam-
le.

This paper’s radiation detection test is built upon a collection
f 149 breath samples vectors, each paired with a room air sample
aken in the same time and place, and processed analogously (the
ecessity of the room air samples will be discussed later, in the
nalysis section). Fifty samples were donated by people recently
xposed to ionising radiation (immediately after a session or a few
ays from one, within a therapy cycle), while the remaining 99
orrespond to people who were not subjected to it.

. Breath gas PTR-MS data problems

In this section some of the problems of the collected PTR-MS
reath sample data are discussed. It is by no means an exhaustive
atalogue, but it helps defining the problem of statistically studying
uch data and it motivates some of the operations which will be
roposed in the analysis section.

Breath PTR-MS data have two structural problems. The first and
oremost is the PTR-MS inability to distinguish between molecules
ith the same nominal mass. There are other kinds of mass spec-

rometers with comparable resolution, but their cost and size rule
hem out of the fast-throughput application we are considering.

The second problem is that only molecules with a proton affinity
igher than that of water can be detected.

These two problems mean that only the easily protonable subset
f breath gas VOCs can be detected, and that groups of same-
eight molecules are indistinguishable from one another and

onsequently lumped together in the spectrum.
There is also an evolution in the behaviour of the PTR-MS device

tself, which has to do with the decay of the proton source with
ime as well as with changing operative conditions. In standard
TR-MS practice this phenomenon is addressed by primary signal
ormalization.

Moreover, a breath sample is strongly affected by changes in the
nvironmental air, and by conditions of the donor which are not
orrelated to his exposure to ionising radiation. The weather, the
ocation, the season, the hour of the day or the presence of other
eople are all examples of external phenomena affecting the air

nhaled by a person and consequently any breath sample donated
y the same. To smoke, to eat, to drink or to lay still for some time
efore donating a breath sample also affect it [7,9,11,22].

The 149 samples considered for developing the radiation detec-
ion test were collected throughout a time span of roughly one and
half year, in different locations including three hospitals and our

esearch centre. The breath donors did not conform to any standard
ampling procedure: some ate or drank shortly beforehand, some
erformed some physical activity, and the sampling bags were filled
ith various numbers of respiratory actions—most people would
eed only one exhalation act, while frail patients might need more.
ome people were sampled more than once: the collectors them-
elves often took a sample of their own breath while in the same
oom as the patients, and some patients were followed through the
adiotherapy arc and breath-sampled accordingly.

For these reasons PTR-MS breath data present a large variability.

rom the point of view of the development of a statistic correlated
ith one particular phenomenon among many, this variability is

een as noisiness. The noisiness is such that no single data entry (i.e.,
olecular mass) appears to be a reliable test for such an indirect

henomenon as the exposure of the donor to ionising radiation,
ass Spectrometry 295 (2010) 13–20 15

which does not change the VOCs in the breath directly but affects
the biological processes producing them.

Strategies to identify and possibly control the sources of this
variability [11], while certainly appealing and extensively inves-
tigated in the literature, will not be pursued here. The reason is
twofold: the focus of the present paper is more on the statistical
analysis than the data collection, and the possible high-throughput
applications envisioned before would make such a strategy very
challenging.

Finally, PTR-MS breath gas data are high dimensional: a single
measurement is a set of 181 mass signals. The high dimensionality
raises the computational cost of standard strategies like principal
component analysis (PCA) or linear discriminant analysis (LDA).
Furthermore, the relatively small number of collected samples with
respect to dimensionality (149 samples for 181 dimensions) carries
the risk of overfitting when devising a test based on this data. This
particular aspect leads to forego direct PCA or LDA analysis and to
look for new strategies.

4. Multidimensional statistical analysis

In this section the key ideas of the statistical analysis of the
breath gas samples from PTR-MS are presented. The analysis is
explained on the basis of the radiation detection data, but can be
generally applied to any PTR-MS breath gas based diagnosis and
it tackles the problem of a relatively limited sample number com-
pared to the sample dimension.

As sketched before, PTR-MS breath sample data present differ-
ent sorts of unwelcome restrictions and noise. These problems are
tackled in three steps. First, the data are preconditioned in order to
cancel or at least reduce some of these effects. Secondly, a family
of multidimensional tests is produced, indexed by a parameter set
and associated to a score. Finally, some parameter values are sam-
pled looking for a good test, that is, a parameter set associated to a
high score.

4.1. Preconditioning

The mathematical aspects of simple chemical equilibrium and
diffusion processes [23] are a fruitful starting point to devise new
analysis strategies. The formulas do not completely apply to real
problems, but rather offer an insight into a useful manipulation
whose feasibility can be checked by means of simple tests and
observations on the available experimental data.

Recall the formula of the chemical equilibrium for a reversible
reaction:

KMa
a KMb

b

KMc
c KMd

d

= Kost (1)

where Ki are the concentrations of the molecules involved in the
reaction with the respective chemical weights Mi, while Kost is the
equilibrium constant which is independent from the concentra-
tions. If we take logarithms we obtain the linear equation:

Ma ln Ka + Mb ln Kb + Mc ln Kc + Md ln Kd = ln Kost (2)

Now consider that a chemical process is the sum of the contribu-
tion of all the elementary reactions involved. This suggests invoking
the law of large numbers and looking for Gaussian distributions.
However these are stable with respect to linear operations, not
multiplications.

In probability theory, the sum of two or more Gaussian random

variables is a Gaussian random variable as well (possibly degener-
ate to a Dirac delta). The same is not true for the product of Gaussian
random variables.

So one gain the intuition that the logarithm of a concentration
might have a Gaussian distribution (see Fig. 1a and b).
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Fig. 1. Distributions of log-concentrations of (a

Working with Gaussians is of course attractive because of the
ow number of parameters required to identify the distribution
mean and variance), as well as the abundance of literature [24]
n the subject, both theoretical and operational.

Recall now the most basic diffusion process equation:

t = K0 e−at + (1 − e−at )K∞ (3)

here t is the time, a is a diffusion coefficient and Kt, K0 and K∞ are
he concentrations at time t, zero and at saturation, respectively.
ne can roughly associate K0 to the inhaled room air and Kt to

he expired air sample after a time t. In this model the quantity of
nterest to us would be K∞, the asymptotic concentration which
s independent on K0 and most closely associated with the state
f the lung cells according to the mentioned assumption of blood-
orn molecules affected by radiation. If one assumes that at is small
r in other words that a respiratory act is short with respect to the
elaxation time of the lungs’ diffusion processes, one notice that Kt

s a poor estimator of K∞. With some manipulations the diffusion
quation can be reformulated as follows:

n
Kt

K0
= ln

[
1 + (1 − e−at )

K∞
K0

]
− at ∼= (1 − e−at )

K∞
K0

− at (4)

hich shows that the logarithm of the ratio between breath sam-
le and room air sample might be a better indicator for K∞, if the
elative variation of K0 is small. But is at really small? If that would
e the case, one should see a strong correlation between Kt and K0,
hat is between the room air and breath samples (see Fig. 2).

According to this approach normalising the breath samples with
espect to the room air samples would reduce the noise intro-
uced by the environmental conditions. But it would also reduce
he effects of the PTR-MS device fluctuations with time: these affect

oom air and breath gas samples in the same way, and the consid-
red normalisation would hopefully cancel out such effects.

In brief, the proposed preconditioning strategy will be to take
ogarithms and perform room air normalisation of the breath sam-
les, while also adding a small constant ˇ to all breath and room
s 45 (acetaldehyde) and (b) mass 59 (acetone).

air sample counts before normalisation:

Kpreconditioned = ln
Kbreath + ˇ

Kroom air + ˇ
(5)

This constant has a twofold aim. Firstly, to avoid divisions by zero
in those cases where no molecules were detected in the room air.
Secondly, to use this constant as one of the parameters of the test
family, with the understanding that a high value for it would oper-
ate as a soft threshold for low count masses, effectively reducing
their impact in the test: the logarithm of the ratio concentrates
around zero as ˇ increases. In other words, ˇ will be the first param-
eter of the test family, a noise parameter.

4.2. Dimensionality reduction

Let us now focus on the heuristics for producing a parameterised
family of tests.

Let us partition the sample data into two non-overlapping sets,
a training set and a validation set. A test will be constructed on
the basis of the information conveyed by the training set, while the
score of the test will be measured on the validation set.

Such a sample data partition can, of course, influence the perfor-
mance of the test family built on it, for example by selecting most of
noisy outliers for the test subset. For this reason, one might repeat
the construction and scoring procedures on a small number of par-
titions, each of them selected independently from the sample data
and the other partitions, and then look for a typical result.

In the radiation detection test case independent and identically
distributed Bernoulli binary random variables with parameter 0.8
will be used to select 7 independent training sets, each with on
average 149 × 0.8 = 112.8 elements. One thus obtains training sets

consisting of 119, 120, 118, 105, 110, 110 and 101 samples respec-
tively. The value of 0.8 for the parameter was chosen in order to
achieve a good compromise between the statistical robustness of
test construction and scoring, the former requiring more informa-
tion to build upon and hence more sample data.
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Fig. 2. Room air an

The scoring part of the analysis will be simple and informal:
he resulting ROC (Receiver Operating Characteristic) curves will
e inspected.

As for the test construction part, the target is a relatively small
ass signal subset which still conveys as much statistical infor-
ation as possible about the separation of the two populations,

rradiated and not irradiated people.
This is again a trade-off on available resources, the samples,

hose nature is limited and noisy. It is a compromise between the
est score, which increases with the amount of statistical data used
o build the test, and the test cost, since the higher the dimension,
he more complex the test and the higher the number of training
amples to build it.

Let us compute a separation score for each mass, which is an
ndicator on how well a single mass separates between the two
ampled populations. Let us use the gaussianity assumption for
og-signals and assume that the empirical variances of the two pop-
lations are the same. In this case a good indicator for separation

s the following quantity:

i = �irr,i − �not irr,i

�i
(6)

here

irr,i =
∑

x ∈ irradiatedKi(x)

Sirradiated
(7)

not irr,i =
∑

x ∈ not irradiatedKi(x)

Snot irradiated
(8)

i =

√∑
x ∈ irradiated

[Ki(x) − �irr,i]
2 +

∑
x ∈ not irradiated

[Ki(x) − �not irr,i]
2

Sirradiated + Snot irradiated
(9)

are the samples, Ki(x) are the preconditioned values for the ith
ass, S is the number of irradiated or not irradiated samples in

he test construction sample subset, and Di is the distance between
he empirical means of the two population distributions and the
ommon empirical standard deviation.

To obtain our desired subset one just computes these Di scores
or each mass i, order them in decreasing score order and pick the
rst N of them. N is thus the second test parameter, a dimension
arameter.

The independent scoring is clearly a sub-optimal approach,

ecause it does not consider correlation between mass signals.
onsider for instance the possibility that the two most separating
asses are strongly correlated to each other, in the sense that both

heir informative aspects (the “signals”) and the disturbing vari-
tions (the “noises”) are in an approximately linear relation pair
th gas correlation.

wise with each other. In this case using both the masses might be
worse than using just one, because it would fill up an extra mass
slot which could have been devoted to a differently informative sig-
nal, meaning a signal with an independent noise which would have
increased the self-averaging effect of the linear combination.

Still, it is a very simple idea whose implementation complexity
scales only linearly with the amount of mass signals measured. In
the considered case of 181 masses, this is a significant advantage.

The third and last parameter will be a distortion parameter Z
closely related to the noise parameter ˇ. For each mass i one com-
putes the fraction of times Zi that the empirical count is lower than
the noise parameter ˇ.

Zi = ||x : Ki(x) < ˇ||
Sirradiated + Snot irradiated

(10)

This provides an indication on how much the preconditioning
distorts the original data. By discarding any mass whose Zi is
greater than the parameter Z, one is reducing the global distortion
introduced by the preconditioning at the hopefully small price of
discarding relatively small and noisy signals.

4.3. Test construction

After preconditioning and dimensionality reduction the prob-
lem is reduced to a small set of opportunely preconditioned signals:
a low-dimensional, quasi-Gaussian problem. Simple strategies like
the Linear Discriminant Analysis (LDA) are now a viable solution,
which will be parameterized by ˇ, N and Z.

Alternatively one can use a much simpler weighted scalar prod-
uct approach (WSP):

WSP =
∑

i ∈ selected masses

Qi × Ki{test sample} (11)

Is Irradiated = Boolean{WSP > 0} (12)

where

Qi = �irr,i − �not irr,i

�2
i

(13)

The WSP can be seen as a radically simplified version of the LDA in

which the empirical correlation matrix has been set to zero with
the exception of the diagonal entries.

To summarize this relatively long section, a new approach
for the analysis of high dimensional breath sample data was
described, based on assumptions coming from the theory of
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tatistical mechanics and chemical equilibrium, as well as sugges-
ions about test complexity coming from information theory. The
pproach consist in preconditioning the data by extracting loga-
ithms and normalising with respect to the room air, then extract
significant mass subset and finally construct a simple linear test
n the subset. Three parameters representing noise level, dimen-
ion and distortion allow to tune the test for a better performance.
he next section illustrates the outcome of the proposed approach
hen applied to the radiation detection problem.

. Results of the multidimensional analysis in the radiation
etection test case

Before presenting the results obtained by the above approach in
he radiation detection case, one shall take care of some extra tech-
ical tweaks. In detail, certain mass signals should be masked out
ecause of being known markers for other unrelated phenomena
7,9,22]:

Mass 42 is typically associated to acetonitrile, a marker for smok-
ers. Since smoking correlates strongly to people developing lung
cancer and being consequently subjected to radiotherapy, one
cannot associate mass 42 directly to exposure to radiation.
Masses 69, 72 and 41 are typically associated to isoprene [25,26], a
gas which appear to increase with cellular damage and repair, but
decrease during exercise [2]. The disputed nature of the decrease
(ventilation or metabolism) suggests a cautionary exclusion of

this signal.
Masses 22–28 appear to be background signal, no interesting
molecules here.
Masses 88, 89 and 95 are significantly contaminated by bag impu-
rities.

Fig. 4. ROC c
Fig. 3. WSP test.

No quantitative analysis and optimization has yet been done
on the test parameters. This will be the topic of further research.
Instead, some heuristic exploration of different parameter combi-
nations was performed on seven different sample subset partitions,
leading to the following observations:

• A parameter choice producing more coherent, less noisy
results between partitions is observed for ˇ = 30, N = 7 and Z
= 0.01.

• Masses 45, 46, 59, 60, 63 and 73 pop up for most of the partitions,
the first four typically associated to Acetaldehyde and Acetone
respectively.

• Acetone appears to be critical for the test quality, even if it is a
molecule that changes wildly with eating—the results are signif-

icantly worse when it is masked out.

• LDA and WSP do not seem to perform too differently. Fig. 3 shows
the scores of the WSP test for the test sample subset 6.

• No measurable effect is noticed when confronting pairs of
patients’ samples before the treatment and after the first session,

urves.
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the small sample number available (15) is here a statistical limit
to decisive observations.

Fig. 3 shows the scoring of the test based on the training partition
ubset 6.

The ROC curves achieved by applying the proposed statistical
nalysis are not yet good enough for screening, but they consis-
ently show a significant correlation between the test and the
ondition of interest, in this case the exposure to ionising irra-
iation, although no study on dose dependence was performed
t this stage. Fig. 4a–c shows seven groups of ROC curves, one
roup for each data subset partition considered. Each group con-
ains four ROC curves, two for the training data (i.e., the “learning”
urve) and two for the test data (the actual “score” or quality mea-
ure of the test). The reason for having two pairs of curves each
s that both the LDA and WSP strategies were applied. They per-
orm similar to each other. There are some fluctuation in the test
erformances with respect to the training, namely there is a poor
erformance for subset two and a good one for subset seven. This

s likely due to outliers being concentrated in the test subset two
nd in the training subset seven, and justifies the approach of
onsidering a small plurality of sample partitions instead of just
ne.

Fig. 4a–c shows the separation between irradiated and non-
rradiated populations (according to tests built with the same
arameters but on different data set partitions) between training
ubset and scoring subset. On the right side are the lists of the
elected masses.

. Conclusions

A multidimensional statistical analysis of PTR-MS data obtained
rom breath gas samples was described and successfully applied,
s a test case, to the problem of detecting exposure of humans to
onising radiation.

The analysis is based on the theory of chemical-diffusion equi-
ibrium and on complexity concepts based on information theory.
t consists of a data preconditioning step by means of a normalisa-
ion with respect to room air samples, followed by a dimensionality
eduction strategy. It works with a relatively limited amount of
ata, it shows good results on the problem considered and it can
e applied to general PTR-MS based detection problems.

Because of the promising ROC curves obtained, the application
f this analysis to the PTR-MS based detection of human irradi-
tion might offer a non-invasive, low-cost, high-throughput test.
he analysis hints that acetaldehyde and acetone might play an
mportant role in the detection.

The innovative aspects of the present paper lie mostly in the
omain of methodology, but they also extend to operative results.

n the first place, the introduction of data preconditioning based
n room air normalisation and gaussianity, and a dimensionality
eduction approach inspired by information theory which allows
perating with relatively few samples with respect to dimensional-
ty are the main contributions. Early operative results are a new test
or detecting exposure to ionising radiation by means of PTR-MS
nalysis of breath samples.

Many aspects of both theory and operative protocol need to be
urther developed.

First of all, on the side of statistical analysis, there is a lot of
pace for development. One should try to refine the normalisa-

ion assumptions, as the correlation between breath and room air
hown in Fig. 2 is not ideal and dependent on the mass observed.
lenty of work remains to be done in the choice of the number
nd the identities of the test masses, since in the test case it was
ust done empirically by looking at some ROC curves. Other criti-
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[
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cal points include the hitherto ignored correlation between masses
and the use of non-linear tests.

Secondly, the proposed approach is agnostic to any biochemical
explanation. Understanding the link between the selected masses
and the problem at hand (in the test case, the exposure to ionising
radiation) is required, in primis to ascertain that the test does not
correlate with conditions which characterise the sampled popula-
tion but have no direct connection to the phenomenon of interest
(for instance age or cancer affliction in hospital patients subjected
to radiotherapy).

On the operative side, better sample collection protocols are
needed in order to reduce dependence from some of the many
sources of unwanted sample variation, and consequently noise.
This involves specifying patient conditions like sleep and diet, for
instance. This would be useful in hospital environments for PTR-
MS breath gas based detection of pathological conditions, but not
in some dire scenario of a large number of measurements after
radiation contamination in the open. Experimenting with different
breathing techniques (for instance re-breathing) or storage systems
might lead to better results independent of being in a medical facil-
ity, as could the selection of narrower bands for the operation of
the PTR-MS measurement, like for instance the temperature of the
sample. More trivially, collecting more samples to produce better
tests would be a very reasonable thing to do.

Finally, the application of the analysis to other PTR-MS breath
detection problems, different from irradiation detection, will be
needed to truly ascertain the validity of the proposed paradigm.
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